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As a model of the thermohaline circulation of the ocean we study the two- 
dimensional Boussinesq equations forced by prescribing the surface temperature and 
the surface salinity flux. We simplify the equations of motion using an expansion 
based on the small aspect ratio of the domain. The result is an amplitude equation 
governing the evolution of the depth averaged salinity field. This amplitude equation 
has multiple, linearly stable equilibria. The simplified dynamics has a Lyapunov 
functional and this variational structure permits a simple characterization of the 
relative stability of the alternative steady solutions. 

Even when the thermal and salinity surface forcing functions are symmetric about 
the equator there are asymmetric solutions, representing pole to pole circulations. 
These asymmetric solutions are stable to small perturbations and are always found 
in conjunction with symmetric solutions, also stable to small perturbations. Recent 
numerical solutions of the full two-dimensional equations have shown very similar 
flow patterns. 

1. Introduction 
At present the ocean circulation is thermally direct : cold water sinks a t  the poles 

and rises a t  the equator. The bottom water is cold and fresh. But palaeoceanographic 
datasets have suggested that in the past the sense of the circulation has been 
reversed, so that warm salty water sank near the equator and cold fresh water 
upwelled at the poles. The bottom water was warm and salty. Kennett & Stott (1991) 
report evidence from sediment records of an abrupt reversal in the oceanic sub- 
thermocline meridional cell. In their interpretation of the data, saline warm water 
from the midlatitudes and tropics sank to the deep ocean and spread to Antarctica 
where bottom water formation was suppressed. Broecker, Peteet & Rind (1985) have 
proposed a similar circulation reversal during glacial times in the North Atlantic, 
leading to a suppression of polar deep-water formation. 

The existence of more than one equilibrium circulation is understandable if one 
considers that the latitudinal distributions of thermal and saline forcing a t  the ocean 
surface are antagonistic in their effects on the density field. Colder temperatures in 
high latitudes favour sinking near the poles, while fresh water fluxes there tend to 
prevent it. 

The analysis of simple box models, such as those proposed by Stommel in 1961, has 
shown that the existence of multiple equilibria requires ' mixed boundary conditions ' 
for the temperature and salinity. This means that the boundary conditions cannot 
be translated into a prescription for density alone (Welander 1986). This difference 
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arises a t  the air-sea interface because the thermal flux depends strongly on the ocean 
temperature, while the saline flux is essentially independent of the salt concentration. 

The meridional thermohaline circulation of a single ocean has several different 
stable states : 

(i) The circulation is dominated by the thermal surface forcing and has a cell in 
each hemisphere with water sinking at the poles and rising a t  the equator. 

(ii) The circulation is predominantly driven by surface salinity flux and has a cell 
in each hemisphere with water sinking a t  the equator. 

(iii) The flow is driven by a combination of thermal and saline forcing and a single 
pole-to-pole cell results. I n  this case two states are possible : one with sinking a t  the 
north pole and the other with sinking at  the south pole. 

I n  his review Welander (1986) illustrates these four equilibria using a three-box 
model in which the connection between the reservoirs is by hydraulic pipes. Two 
boxes represent the polar and subtropical section of each hemisphere and the third 
box is a proxy for the equatorial and subtropical region. I n  the effort to increase both 
the vertical and horizontal resolution, many variations and elaborations of box 
models can now be found in the literature. Unfortunately the twin advantages of 
conceptual simplicity and analytic tractability are lost as the plumbing becomes 
more intricate. And it is not clear that  multiple box models are ‘closer’ to the true 
dynamics than the two-box model originally proposed by Stommel (1961). 

As an alternative to  box models, multiple equilibria are also found in complex 
general circulation models (GCMs) of the ocean (Bryan 1986) and of the coupled 
ocean-atmosphere system (Manabe & Stouffer 1988). I n  Bryan (1986) the surface 
flux conditions for salt and temperature are specified. On the timescales relevant to 
climate change the Rayleigh-type boundary condition for temperature is equivalent 
to a fixed-temperature prescription and Bryan demonstrates that  the model has 
multiple stable equilibria. 

A model of intermediate complexity between box-models and GCMs has been 
analysed by Thual & McWilliams (1991). They consider the two-dimensional non- 
rotating Navier-Stokes equations forced by prescribed surface temperature and 
salinity flux. Numerical solutions of the equations exhibit the equilibria listed above 
and Thual & McWilliams (1991) determine the range of forcing parameters for which 
these multiple equilibria are obtained. 

In  this article we use the same intermediate model employed by Thual & 
McWilliams, but we analyse it in a particularly tractable limit in which it is possible 
to  take advantage of the extremely small aspect ratio of the domain. We expand in 
a small parameter which is the ratio of the vertical to horizontal lengthscales. This 
approach to  convection with flux boundary conditions has previously been employed 
by Chapman & Proctor 1980, Depassier & Spiegel 1982 and Roberts 1985. The 
asymptotic development used here is similar in spirit, but the details of the scaling 
are different. 

Specifically we assume that the surface forcing is of small enough amplitude that 
diffusion dominates the lowest-order balance. This restriction permits analytical 
progress, but constrains the temperature and salinity fields to  be vertically 
homogenous to a first approximation. Of course vertical stratification is an essential 
ingredient both in the ocean and in general circulation models. However, the simple 
limit analysed here reproduces qualitatively the equilibria listed above and permits 
an easy characterization of the solutions. 
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2. Equation of motion and non-dimensionalization 
We consider the two-dimensional, Boussinesq equations for a fluid whose motion 

is driven by temperature and salinity gradients. In standard notation the equations 
of motion are: 

(2.1 a )  

( 2 . l b )  

a, v + v a, v + w a, v = - a,p + Vvzv, 

a, w + v ay w + w a, w = - a,p-g(a ,  S-  aT T )  + vV2w, 

a, T+v 8, T+ w a,T = K~ V2T, (2.1 d )  

a,s+va,s+wa,s = KSv2s. ( 2 . 1  e )  

The motion is in the (y, 2)-plane. This simplified model captures certain features of 
the zonally averaged meridional circulation driven by thermohaline forcing. It does 
not, however, include the effects of rotation and vertical vorticity, which are 
paramount in the wind-driven ocean circulation. 

The density p is related to the temperature, T ,  and salinity, S ,  through the 
equation of state, which we take to be linear: 

a,v+a,w = 0, ( 2 . l c )  

p = p o ( l + a , S - a , T ) .  (2.2) 

v = -a,$, w = a,$. (2 .3)  

Because the motion is two-dimensional, we introduce a stream function, $, so that 

The pressure field can be eliminated by forming the vorticity equation, and the flow 
is then governed by: 

(2 .4)  

We assume that our model ocean is contained in a rectangular box with coordinates 
0 < x < d ,  and - 1  < y < 1. The forcing is provided by the top boundary conditions 
on temperature and salinity. As discussed by Bryan (1986) the salinity and 
temperature fields are forced very differently a t  the top boundary. Because the heat 
flux between the atmosphere and the ocean depends strongly on the sea surface 
temperature, the temperature at  the interface tends to adjust to an equilibrium 
value. In a simple model, such as ours, where the ocean is decoupled from the 
atmosphere, this amounts to specifying the temperature at the ocean top, z = d. On 
the other hand, the ocean surface salinity has almost no effect on the rate of 
precipitation and evaporation, and, in a decoupled model, it is appropriate to specify 
the salinity flux at  the ocean surface. We further assume that the solid earth at the 
bottom and on the sides of the ocean is a poor conductor so both the temperature and 
salinity fluxes vanish there. In summary we have the following boundary conditions 
for T and S 

I atV2$+ J($,  V2$) = g(a,a,T-a,a,S)+vV4+b, 

a, T +  J ($ ,  T )  = KT V ~ T ,  
a,S+ J ($ ,S )  = K , V ~ S .  

(2.5) 

Here AT and AS are dimensional constants characterizing the magnitude of the 
forcing. 8(y) and F( y) are non-dimensional functions whose magnitude is normalized 
to unity by the choice of AT and AS. Because we neglect mechanical forcing the 

I T(Y, 4 = A T w 4 ,  a,S(y, 4 = m q y ) / 4  

a, T(Y, 0) = 0, a,S(y, 0) = 0, 
a,T(fZ,z) = 0 ,  a,S(+Z,z)=O. 
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boundary conditions for the stream function are homogeneous on all boundaries. 
Thus $ is zero on the boundary and it also satisfies either no-slip or no-stress. In the 
discussion to follow it will become clear that the choice of no-slip versus no-stress 
makes little difference to the results. 

The system (2.4) with boundary conditions (2.5) is best dealt with in non- 
dimensional variables (denoted for the moment by '). We use the definitions 

(2.6) 
In (2.6) we have introduced the aspect ratio 

xd 
- I '  

e = -  

Dropping all the primes, (2.4) becomes in non-dimensional variables : 

(2.8) I p-yatc+J($, 511 = a,~-a,s+(a,z+~2a;)c, 

a, T+J(@,  T) = (a;+e2a;) T ,  
L-"a, s + J(+, s)] = (a; + € 2  a;) s, 

where 5 = (a; +e2a; )@.  We have denoted with P = V / K ~  the Prandtl number and 
with L = K ~ / K ~  the Lewis number. The motion is now contained in the domain 
0 < z < 1 and -x < y < x. The inhomogeneous boundary conditions for the 
temperature and salinity fields are 

T(y,  1) = ae(y), a,S(y, 1) = WY).  (2.9) 
Here a and b are the non-dimensional numbers introduced by Thual & McWilliams 

gaT ATd3s2 gaSASd3s2 
V K T  V K T  

a =  , b =  (2.10) 

These parameters are essentially the thermal and saline Rayleigh numbers. 
In summary, there are five dimensionless parameters: a ,  b ,  P,  L and E .  There are 

also two externally prescribed functions which enter through the boundary 
conditions at z = 1 namely T(y ,  1 )  = aO(y) and a,S(y ,  1 )  = b F ( y ) .  

3. The expansion 
For oceanic applications, the aspect ratio, E ,  is very small and we seek an 

expansion in this parameter so that analytic progress can be made. Because no 
mechanical forcing is imposed, motion occurs in response to the density gradient 
prescribed at the surface. The analysis of the linear problem in Thual & McWilliams 
suggests that if the amplitude of the surface salinity flux is related to the surface 
temperature by the relation 

then the temperature and salinity contribution to the density field are of the same 
order. We further assume that a is of the order of E and we consider a distinguished 
limit in which e +. 0 and 

where a, and b, are held fixed. All the fields are expanded in powers of E :  

b - e2u, (3.1) 

a = €a l ,  b = e3b3, (3.2) 

(3.3) ( $ 9  T,  8) = 4 + 1 ,  T,, 8 1 )  + w 2 >  T,, S2) + . . ., 
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and the time is rescaled by t ,  = set so that 

a, = Ezatl. (3.4) 
The scalings for a and b in (3 .2)  require that must be equal a, O(y) at z = 1, and 

all of the other terms in the expansion of T vanish at  this upper boundary. However, 
for the salinity it is a,S, which satisfies the flux condition at z = 1. The earlier terms 
in the expansion, a,S, and a,&, are both zero at  the upper boundary. 

3.1. The jirst-order solution 
Collecting the terms of order e we have the system 

The fixed-temperature boundary condition determines the fmt-order temperature 
field, while the salinity is undetermined at this order. Thus the solution of (3.5) is 

q = a, O(y), 8, = S,(Y, t z ) ,  $1 = W ( 4  a,cs,-a, 0) .  (3.6 a+) 

Because the boundary conditions on the salinity field only determine its flux, the 
depth-averaged salinity can be much larger than might be anticipated by naive 
scaling arguments. In  this case the surface salinity flux is O(s3), yet the depth- 
average salinity field, s,, is O(E)  and its evolution is determined at  third order. 

The shape function W(z)  depends on the boundary conditions on @ at z = 0 and 1. 
For no-stress one finds 

Other boundary conditions lead to different quartic polynomials but, in anticipation 
of our results below, there are no qualitative effects introduced by different 
homogeneous boundary conditions on $. 

The smallness of the aspect ratio, 8, together with the restriction to small thermal 
and saline Rayleigh numbers (3 .2) ,  forces vertical diffusion to dominate. As a 
consequence, the lowest-order salinity and temperature fields are vertically 
homogeneous. Of course, in the ocean the Rayleigh numbers are very large, 
advection overwhelms mixing and the temperature and salinity are stratified. 
However, the scaling (3.2) permits analytic progress and despite the unrealistic 
vertical structures of the fields, we will show that it leads to multiple equilibria. 

3.2. The second-order solution 

W ( Z )  E &(z4-2z3+z). (3.7) 

At next order, e2, one has: 

P-lJ(@l,a;$l) = a,(T,-S,)+al@,, (3 .8a)  
-a,+,a,q= a;&, (3 .8b)  

- L-, a, $, a, s, = a; s,. ( 3 . 8 ~ )  

-w ,q  =a,%, (3 .9a)  
-L-1@,a,s1 = a,s,. (3.9b) 

Note that a,S, = 0 at both boundaries so the boundary conditions on salinity are 
automatically satisfied at this order. (Because b - s3 the imposed salinity flux does 
not enter till third order.) Thus at second order there is no solvability condition to 
determine S,(y, t z ) .  

The temperature and salinity equations can be integrated in 2 :  
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One can now integrate (3.9) to obtain explicit expressions for S, and T,. With the 

1 (3.10) 

polynomial W ( z )  in (3.7) one finds 

q = - U, a, e(a, S,  -a, a, e) u(z) ,  

S ,  = -L-laY sl(a, 8, -al a, 0 )  [ U(Z)  +&I, J 
where the shape function U ( z )  is 

U(Z) = & ( 2 ~ ~ - 5 2 ~ + 5 ~ ~ - 2 ) .  (3.11) 

The constants of integration in (3.10) are determined imposing the boundary 
conditions T,(y, 1)  = a, T,(y, 0) = a,S,(y, 0) = 0 and requiring that the vertical 
average of S, vanishes. This second Condition amounts to a definition of S,(y, t , )  as 
the vertically averaged salinity. We do not need the explicit expression for )c/, (the 
shape function is a ninth-order polynomial), but if necessary it could be calculated 
by four integrations of ( 3 . 8 ~ ) .  

Finally, we observe that there is no heat flux through the top boundary due to 
either or T, (from (3.9) a, T, = 0 a t  z = 1) .  At third order we find a non-zero heat 
flux, and of course it is a t  third order that a non-zero saline flux first appears. Thus, 
despite the superficial disparity implied by the scaling in (3.2), the thermal and saline 
fluxes are actually of the same order, i.e. e3, 

3.3. The third-order solution and the solvability condition 

The salinity equation at 0 ( e 3 )  is 

L-1[atZs,+ ~ ( ~ ~ , ~ , ) - a , ~ , a , s , l  = a;s,+a;s,. (3.12) 

At this order the salinity field is forced by the imposed flux, a,S,(l, y) = b,F(y). The 
solvability condition is obtained integrating (3.12) vertically : 

(3.13) 

Substituting the expression ( 3 . 6 ~ )  for $l and (3.9b) for a,S, into (3.13) we find the 
evolution equation for the vertically averaged salinity field 

3.4. The canonical form of the amplitude equation 

We now put the amplitude equation (3.14) in canonical form using a cosmetic 
rescaling. We introduce a new time 

r = Lt,  = -t, (3.15) 

where t in (3.15) is the dimensional time variable. We define a new independent 

U(y,  7) U;'S1, (3.16) variable 

and then (3.14) is 

a , a - ~ ~ a y [ a y U ( a y U - a y e ) ~ ]  = rF(y)+a;a-yza:u,  (3.17) 

?KS 

12 

where the coefficients are 

(3.18) 

With the polynomial W(z)  in (3.7) the integral in (3.18) is W(z)dz = 1/19040. 



Multiple equilibria in two-dimensional thermohaline circulation 297 

In (3.17) we have also added a fourth-order hyperdiffusion term, y2a:u, to 
‘regularize’ the equation. We show below that without this term the amplitude 
equation develops discontinuities in a, cr. The hyperdiffusion smooths these jumps by 
forming boundary layers of thicknesses y.  Apart from this, the role of y is limited and 
provided it is small it does not effect the qualitative properties of the solution. For 
instance, both the location and the size of the jumps in u, are independent of y.  

A further justification for the ad hoc introduction of the hyperdiffusion is that we 
anticipate the arrival of a term with this form at fifth order in the E expansion. In 
particular, the ‘ cross-term ’ a: $ in the vorticity equation eventually generates a 
term proportional to atS, in the vertically averaged salinity balance at e5. The 
reconstituted amplitude equation then contains y2 3; u with y - 8. 

The boundary conditions on (3.17) are 

a,a(+x,T) = 0, a;a(fx,7) = 0, (3.19) 

and they are obtained enforcing no salt flux and no stress at the lateral boundaries. 
(We are implicitly assuming that a, 8( f 7c) = O( x) = 0). 

Equation (3.17) is the canonical form of the amplitude equation. Although the 
original equations contained five non-dimensional parameters, the reduced system in 
(3.17) contains three: r ,  p and y.  And we show below that y has no qualitative 
importance: it is r and p which determine the structure of multiple solutions. 

3.5. A discussion of the physical basis of the expansion 
The non-dimensional amplitude equation in (3.17) is an equation for the vertically 
averaged salinity : 

S ( y ,  t )  - S(y,  Z, t )  dz. (3.20) 

In (3.20) we use the dimensional variables introduced at  the beginning of $2. In terms 
of these dimensional variables the amplitude equation (3.17) is 

:I: 
(3.21) 

d8g2 K M  a, f 7  = K~ a p + c - a ,  [(aS a,s-a, a, T ) 2  a,s] ++P(y) .  
V2Ks d 

where c is a dimensionless constant whose value depends on the boundary conditions 
used for p. Equation (3.21) is a nonlinear diffusion equation for the vertically 
averaged salinity field in (3.20). The nonlinear part of the diffusivity increases with 
the square of the density gradient, a, a, g- aT a, !i’. 

The asymmetry between T and S is evident. It is not necessary to find a 
conservation equation for T, analogous to (3.21), because the fixed temperature 
condition at the upper boundary ensures that z ATO(y). The fixed flux condition 
on salinity is not so constraining. 

The expansion which leads to (3.21) has several unrealistic restrictions which 
should be noted. Equation (3.6a, b )  shows that the leading terms in both the 
temperature and salinity fields are independent of z. Thus the whole expansion 
springs from using (3.2) to restrict the amplitude of the thermal and saline forcing so 
that vertical diffusion of temperature and salinity is faster than the generation of 
vertical inhomogeneities by differential horizontal advection. This assumption is 
identical to the approximation in Taylor’s (1953) discussion of shear dispersion, viz. 
because v depends on z the term v a,S in (2.1 e )  continuously creates depth dependent 
salinity variations from the depth-averaged field. This creation is balanced by 
vertical diffusion, as shown in (3.8b) and ( 3 . 8 ~ ) .  
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The salinity and temperature fields in the ocean are not uniform in the vertical to 
even a rough approximation. Although the aspect ratio, E ,  is of order & the thermal 
and saline Rayleigh numbers are so large that the velocities ovcrwhelm the vertical 
mixing. 

However, the calculations by T h u d  & McWilliams (1991, figure 2) show that the 
temperature and salinity are not far from being vertically homogeneous. In  $5 we 
argue that (3.21) does capture the essential structure of the multiple equilibria 
reported by Thual & MeWilliams. As yet there is no evidence that either general 
circulation models or multi-box models have multiple equilibria which differ 
qualitatively from the examples described by Thual & MeWilliams and by us in $5. 

4. Variational structure of the amplitude equation 
Some general properties of the amplitude equation arc revealed by considering the 

evolution equation in terms of the salinity gradient, x = a,a, and the temperature 
gradient, T,I = aye. Taking the y-derivativc of (3.17) we have 

(4.1 ) a7x = a; b2x(x-T,I)2 -&A + x-Y2  a;xL 
where we have introduced 

J --I 

Notice that f ( ~ )  must vanish in order for the net salinity flux into the domain to be 
zero. We assume that this is the case. The boundary conditions in (3.18) translate to  
x = i3;x = 0 at  y = +IT. 

Equation (4.1) is the Cahn-Hilliard (1958) equation with non-constant coefficients. 
A recent review of its mathematical properties (for constant coefficients) can be 
found in Alikakos, Bates & Fusco (1991). Equation (4.1) can be written as 

where @[XI is the functional 

@[XI = SI, 
and V(;y, y) is the function 

2 1  4 v x ,  Y) = P (ax - ix37) + p( 1 + P 2 g )  - r -x .  (4.5) 

In (4.3) we have introduced the variational derivative of the functional @[XI: 

The advantage of the form (4.3) is that one can now show by direct calculation that 
@ is a Lyapunov functional. Specifically: 

(4.7) 
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Because @ is bounded from below and always decreases in time, a steady state must 
be reached where @ is local minimum. The integral result (4.7) guarantees that the 
system has a t  least one stable equilibrium which minimizes the Lyapunov functional 
@. 

We now proceed to  analyse the steady solutions of (4.1). The stability of these 
solutions can be assessed by calculating @[XI and determining which steady solution 
minimizes this functional. The linearly stable steady solutions are local minima and 
unstable steady solutions arc local maxima or saddle points of @[XI. 

4.1. Steady solutions and their stability 
The steady state solutions of (4.1) satisfy 

with x( +IT) = 0. Because y is a small number, the term y 2 a i x  can be neglected 
except in boundary-layer regions. Thus outside of boundary layers the steady 
solutions are obtained approximately by solving thc cubic algebraic equation 

v, = p 2 x ( x - 7 ) 2 + x - r f =  0, (4.9) 

for the salinity gradient, x, as a function of y. 
The cubic equation in (4.9) sometimes has three real solutions, but depending on 

the values of the parameters p and r and the position y, there may only be one. 
Consider, for example, 0 and F to be symmetric functions of y. Thus 7 and f are 
antisymmetric functions which both vanish at the equator y = 0. It is clear from 
inspection of (4.9) that  at y = 0 there is only one real solution, namely x(0) = 0. On 
the other hand, there might be locations where the cubic has three real solutions. To 
illustrate this possibility concretely consider the special case in which rf(y) = ~ ( y ) ,  so 
that the cubic in (4.9) can be factorized conveniently. The three roots are then 

(4.10) 

Thus in those regions where 7 exceeds 2/p, x can take any of the three possible values 
which are the extrema of V ( x ) .  Only x A  and xc in (4.10) are local minima of V ( x ) .  The 
third solution branch, xB is a maximum and, as one expects from the earlier 
variational arguments, this branch is unstable to  infinitesimal perturbations. A proof 
is given in Appendix A. 

In figure 1 we plot the cubic polynomial V, and show a convenient geometric 
argument (the 'Maxwell construction ') which determines the relative values of V a t  
the three equilibrium points. Referring to  figure 1 

(4.11) 

where P and Q are the areas under the curve 5. Q is negative because it lies below 
the x-axis. Thus V(x,) > V ( x A )  and V ( x B )  > V ( x c ) ,  i.e. V ( x B )  is a local maximum. It 
is also clear in figure 1 that  P > IQI so V(xc )  = V(xa) +P+ Q > V ( x A ) ,  i.e. V ( x A )  is the 
global minimum of V(x). Hence to construct a steady, linearly stable solution we can 
select either of the solution branches xA(y) or xc(y). 

A linearly stable solution might be constructed by selecting the local minimum, 
xc(y), but because V ( x A )  < V ( x c )  this solution is unstable to strong perturbations. 



300 

1.0 

P .  Cessi and W.  R. Young 

- 

x s w  xc 

y p =  10 
r = 1.2 - 

r] = 1.0 
- 1.5 I I 

FIGURE 2. A schematic illustration of the two solution branches x,(y) and xc(y). As in figure 1 we 
suppose that V ( x , )  > V(x , ) .  Because both X, and xc  are local minima both of these branches are 
linearly stable, but because xA is the global minimum a large localized perturbation of xc, such as 
the dashed curve, can expand so that xa replaces xc .  By contrast a large localized perturbation of 
x,, such as the dotted curve, shrinks and leaves xA.  

For instance if we perturb xc(y) in a small region by jumping to the xA(y) branch and 
back again (see figure 2) then this ‘bubble’ grows so that xA(y) replaces xc(y) in all 
of the contiguous region where V ( x A )  < V(xc ) .  Thus the branch xc(y) is ‘metastable’. 

Alternatively one can construct a solution by selecting the global minimum, xA(y). 
This solution is not only linearly stable, but it also resists strong perturbations, i.e. 
‘bubbles’ of xc(y) shrink as they are replaced by xA(y). 

4.2. Changes of solution branch at critical points 
There are particular values of y a t  which V ( x A )  = V ( x c ) ,  i.e. the areas P and Q in figure 
1 are equal in magnitude. We refer to these positions, at which an exchange of global 
minima between branches occurs, as critical points. 

For instance, if rf(y) = ~(y), as we assumed in (4.10), then one can show that the 
location of the critical points, denoted by ys, is determined by solving 
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y2(ys) = 9/(2p2). This condition ensures that the inflexion point of the cubic V,, 
which is at  x = %, coincides with xB. Then from symmetry the two areas P and Q in 
figure 1 are equal. 

The critical points are significant landmarks on the y-axis because, at these points, 
(4.8) has steady solutions which jump between branches. The jump is accomplished 
in a boundary layer of thickens y ,  so that y2xvv in (4.8) is of order unity in the 
neighbourhood of ys. Further details of the boundary-layer solution are in Appendix 
B. Here we give a simple proof that steady boundary-layer solutions are only possible 
at the critical points. 

Multiplying (4.8) by xy and integrating across the boundary layer a t  ys one finds 
that 

[$Y2XE-  V ( X ) l $ Z  = 0. (4.12) 

Since the term vxi  is very small on either side of the boundary layer (i.e. at  
y = ysf co) we see from (4.12) that V ( x )  must not jump when x changes branch in 
a boundary layer at ys. 

To summarize, steady boundary-layer solutions which pass from one solutions 
branch to another are only possible at  critical points where V ( x A )  = V(xc) .  ~ ( y )  
jumps as one passes through one side of the boundary layer at  ys to the other. V ( x )  
does not jump as one passes through the boundary layer. Using the geometry in 
figure 1, the critical points are located by requiring that the two areas P and Q are 
equal in magnitude. 

5. Multiple equilibria in the example of Thual & McWilliams 
Thual & McWilliams (1991) solved the full equations of motion in (2.4) using a 

(5.1) 

These forms correspond to a surface temperature condition with a warm equator 
(y = 0) and cold polar regions (y = +n). The surface boundary condition for salt 
imposes positive flux into the ocean at the equator (evaporation exceeds 
precipitation) and negative flux at  the poles (precipitation exceeds evaporation). 

In this section we illustrate the abstract arguments of $4 by solving (4.8) with ~ ( y )  
andf(y) in (5.1). With these choices the steady form of the amplitude equation in 
(4.8) is 

As explained in $4, we suppose that y + 1 and find approximate solutions by solving 
the cubic polynomial obtained by neglecting the right-hand side of (5.2), i.e. 
V, = p2x(x + sin Y ) ~  + x+ r sin y = 0. We anticipate changes of branch and boundary 
layers of thickness y at the critical points. 

numerical scheme. Their forcing functions were 

B(y) = F(y)  = cosy, ~ ( y )  =f(y) = -sin y. 

,u2x(x+ siny)2+X+rsiny = y'tlix. (5.2) 

5.1. Two limiting cases ; large and small r 

For large r there is a single real solution of (5.2) given approximately by the 
dominant balance ,2x3  x -rsin y in (5.2). The results of a numerical solution of 
3 = 0 with r = 2 and ,u2 = 10 are plotted in figure 3(a) .  This solution is salinity 
dominated because water sinks at the equator and upwells at the poles. (Notice that 
in the present notation the leading-order streamfunction in (3.6 c )  is proportional to 
the density gradient, x-7, and that W(z)  in (3.7) is positive definite. The dashed line 
in figure 3 ( a )  shows that w = $'v-xy-qy is positive at  y = kn,) 
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FIGURE 3. ( a )  - , Only real solution of V ,  = 0 when ,u2 = 10 and r = 2 ; ---, total density 
gradient, x-71. Because the sign of the density gradient is the same as the sign of the salinity 
gradient, ~ ( y ) ,  we refer to this as ‘salinity dominated flow ’. We explain in the text that this implies 
that fluid upwells a t  the poles and sinks at the equator. ( b )  - , Only real solution of V, = 0 when 
,uz = 10 and r = 0.9; ---, total density gradient, x - 7 .  Because the sign of the density gradient 
is the same as the sign of the temperature gradient, ~ ( y )  = -sin y, we refer to this as ‘thermally 
dominated flow ’. The circulation in this case sinks at the poles and upwells a t  the equator. 

At the other end of the parameter space, for small r ,  the thermal forcing dominates 
and the water sinks a t  the poles. Again, there is only one real solution of (5.2). The 
dominant balance is (p2 sin2 y + 1) x x - r sin y and the results of a numerical solution 
with r = 0.9 and p2 = 10 are plotted in figure 3 ( b ) .  

5.2. Intermediate values of r 
The cubic polynomial, V, = 0, has three real solutions when r is of order unity. But, 
as figure 4 (a)  shows, these three solution branches exist only in a part of the domain 
-n < y < n. For instance, if we start a t  y = -n and move north then at first there 
is only one solution branch available, namely xc(y) x -rsin y. This is the saline 
branch because the sign of the density gradient is the same as the sign of the salinity 
gradient (this is not shown in figure 4). But at y = -&)-A the other two solution 
branches appear and continue till y = - (in) + A. Then in the equatorial band, 
-(in) + A  < y < (in) - A ,  there is again only one solution available. The northern 
hemisphere is simply an antisymmetric reflection of the southern. Thus there are two 
‘ midlatitude ’ bands where multiple solution branches exist. There is the southern 
band, -!jn-A < y < - @ + A ,  and the northern band, i x - A  < y < $ + A .  
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--x Y.1 Y.2 0 YIS Y.4 n 

FIQURE 4. (a) This shows the three real solutions of V = 0 when pa = 10 and r = 1.2 as functions 
of y. There is only one branch, xc(y) which exists for ail y. Multiple equilibria are possible because 
the solution can jump from xc(y) to x n ( y )  in the midlatitude bands where three real solution 
branches exist. (Jumps to xB(y) are possible, but these correspond to  linearly unstable solutions.) 
(b) This shows the potential, V(x ) ,  evaluated at the three solution branches from part (a). The 
critical points at which V(xc(y)) = V(xA(y)) are indicated by ysl-ysI. At these points one can 
construct boundary-layer solutions which jump between xc and x A .  

Analytic expressions for h as a function of r and ,u2 are complicated, and not 
informative. More important landmarks are the locations, ys, of the critical points. 
These are the solutions of 

(This result is derived in Appendix B.) Notice that the four solutions of (5.3) (denoted 
by ysl to ys4 and shown in figure 4 b )  do not coincide with the four locations at 
which multiple solutions appear and disappear (i.e. y = & (in) & A ) .  The critical points 
lie properly within the midlatitude multiple solutions bands. 

To construct a steady stable solution, one begins at y = --x on the only available 
solution branch of (5.2) (the saline branch, denoted by xc(y) in figure 4a) and moves 
northward past -(i-x)-h. At the first critical point, ysl, one has a choice. It is 
possible to stay on the saline branch, xc(y), and continue northward. The alternative 
is to jump at  ysl to the thermal branch, x A ( y ) ,  and then jump back to xc(y) a t  ysZ. 
In the interval ysl < y < ysZ it turns out that V ( x A )  < V ( x c )  so the first alternative, 
xc, is a metastable solution, while the second, x A ,  is stable even to large perturbations. 
In  the northern hemisphere one is presented with .the same choice at ysZ. 

(sinys)2 = 9 ,~ -~ ($ -  1). (5.3) 



304 P .  Cessi and W. R. Young 

- 
- 
- 
- 

- 
- 
- 

- 
- 
G 

H 
I I ' I ' I  I ' I I I ' I I I 

0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 
0 . 8 -  

K2 
FIQURE 5. The (p-', r )  parameter plane. The cubic polynomial V, = 0 has three real roots inside the 
region EHG. However, the differential equation (5.2) has multiple solutions only within FHB. The 
cusp, H ,  is at r = 0 and p' = 3. 

To summarize, there is a choice (to jump or not to jump) in each hemisphere, and 
so there are four different linearly stable solutions. Three of these are metastable 
because a large localized salinity perturbation of the saline branch, x c ( y ) ,  can punch 
through to the thermal branch, x A ( y ) ,  and expand because V ( x A )  < V(x,) (figure 4 b ) .  
Two of the three metastable solutions are asymmetric about the equator because 
there is a jump in only one hemisphere. The other metastable solution, which has no 
jumps, is just the saline branch x c ( y ) ,  and so is symmetric. The fourth, nonlinearly 
stable solution is a global minimum of V ( x ) .  It has a jump to the thermal branch in 
both hemispheres and so is symmetric about the equator. 

The discussion in the previous paragraphs has referred to figure 4 in which 
r = 1.2 > 1.  Analogous multiple solutions exist when r < 1,  but in this case the 
branch xc(y), which exists for all --7c < y < n, is a thermal flow with sinking a t  the 
poles and upwelling a t  the equator. A t  the transition, T = 1, the branch x c ( y )  is given 
by (4.10c),  so that there is no density gradient (2-7 = 0) and therefore no motion 

5.3. The domain of existence and stability of multiple states 
Multiple solutions of the cubic polynomial on the left-hand side of (5.2) can only be 

($1 = $2 = 0). 

found if 

(This result is obtained using the formula for the solution of a cubic polynomial.) The 
boundary of this domain is shown in figure 5 by the solid curve EHG. There is a cusp 
at the point H which is at r = Q and ,u2 = 3. 

However, only a subset of the domain defined by (5.4) supports stable multiple 
equilibria. Analysis of the function V(x) reveals that for 

27r-18-2,u2 2 0, (5 .5)  

(the dashed curve FH) only one symmetric state can be constructed. A representative 
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FIGURE 6. (a) The real solutions of V, = 0 when p2 = 10 and r = 1.5. This point is within the region 
EHF in figure 5. As in figure 4, there is midlatitude band in which this cubic has three real solutions. 
( b )  The potential, V(ly), evaluated a t  the three solution branches from (a). There are no critical 
points at which changes of branch can occur. We conclude that multiple solutions of the differential 
equation (5.2) are not possible within EHF. 

solution with parameters in the region EHF is shown in figure 6. Notice that V ( x A ) ,  
shown as a dotted line in figure 6 ( b ) ,  is always larger than V ( x c ) ,  shown as a solid line. 
Therefore within EHF thee is no critical point at which xc can jump to x A  via an 
internal boundary layer. 

To summarize, multiple solutions of the differential equation (5.2) (such as that 
shown in figure 4) are found within the domain FHC. The lower curve, GH, is given 
by 27r - 18 - 2p2 = - 2p2( 1 - 3 , ~ ~ ~ ) :  and the upper curve, F H ,  by 27r - 18 - 2p2 = 0. 
The two curves meet in a cusp at r = and p2 = 3. 

5.4.  Comparison with the numerical solution 
Thual & McWilliams (1991) solved the unreduced equations of motion in (2.8) 
numerically. In a control space analogous to that in figure 5 they found two cusp 
catastrophes. Based on calculations with e = 1 and e = 0.4 they concluded that as 
e+O the two cusps merge and both converge to (a ,b)  = (eal,e3b3) = (0,O). The 
amplitude expansion used here supports both of these conclusions : we find only one 
cusp catastrophe and, since a,  and b, are fixed as e+O, this point converges to 
(a ,b )  = ( 0 , O )  as e+O. 

Thual & McWilliams also speculated that as s+O the cusps approach the 'zero 
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FIGURE 7. This figure shows the leading-order approximation to the streamfunction, 

ko - (X(Y) -W) w4, 
for three of the four linearly stable solutions in figure 4. We have not included the boundary-layer 
corrections (Appendix B) so that  the streamfunctions shown in this figure are discontinuous at the 
critical points. (a) This shows the saline mode in which x = xc  everywhere. There are no changes 
of branch. This flow is symmetric about the equator and is metastable. (b) This shows the thermal 
flow in which x jumps from xc to x A  and back in both hemispheres. The flow is symmetric about 
the equator. (c) This shows one of the two asymmetric solutions. I n  this case there is a jump in the 
southern hemisphere, but not in the northern hemisphere. (The other asymmetric solution is a 
reflection of this one.) 

circulation line’. I n  our terminology this is r = 1. (Note that when r = 1 the cubic 
polynomial on the left-hand side of (5.2) has a root xc(y) = ~ ( y )  which corresponds 
to no density gradient and no motion.) Our results disagree with this conclusion: the 
cusp in figure 5 is at r = 0, not r = 1. It may be that the numerical calculations with 
6 = 0.4 were not close enough to asymptotic values to distinguish between 1 and i. 

A second point of disagreement between the amplitude equation and the full 
numerical solution is indicated in figure 7 .  In his figure we contour the leading-order 
approximation to the stream function 

@1(9,4 = % ( X - T )  w.4 (5.6) 

for three of the four multiple solutions shown in figure 4. (We show only one of the 
two asymmetric states, since the other is merely a reflection of the first.) The 
asymmetric flow in figure 7 ( c )  jumps to the thermal branch in the southern 
hemisphere, but not in the northern hemisphere. Since both x and 7 are zero at  y = 0 
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the equatorial line, y = 0, is a streamline separating the strong thermal cell in the 
southern hemisphere from the weaker saline cell in the northern hemisphere. Note 
that both cells circulate in the same direction. 

The results in Thual & McWilliams (1991) show that the asymmetric circulation 
actually consists of a single pole-to-pole cell. Their figure 2(c) shows that in the 
asymmetric solution the stream function is much larger in one hemisphere than in 
the other but, in contrast to figure 7(c)  the equatorial line is not a streamline 
separating two cells. This failure of the amplitude equation might be corrected by the 
inclusion of higher-order terms in E .  

6. Conclusion 
In this article we have used an expansion in aspect ratio to simplify the two- 

dimensional non-rotating thermohaline convection equations in (2.1). The result of 
the expansion is the equation (3.21) for the vertically averaged salinity field. The 
asymmetry between temperature and salinity arises from the different boundary 
conditions. At  the top of the domain the temperature and the salinity flux are 
prescribed. 

The expansion we have used has some unrealistic limitations described in the 
discussion below (3.21). Despite these limitations (3.21) has several advantages over 
the increasingly elaborate box models which have been advanced as attempts to 
make the original Stommel (1961) two-box model more realistic. First, (3.21) is a 
rational approximation to the dynamics of non-rotating two-dimensional thermo- 
haline convection in (2.1) and could be compared quantitatively and systematically 
with numerical solutions of that system. The same cannot be said for multi-box 
models. Further, it is possible to extend (3.21) to include three dimensions and 
rotation. 

The second advantage of (3.21) is that it is more compact and more analytically 
tractable than multi-box models. In  support of this assertion we emphasize the 
utility of the variational formulation in $4. With the variational principle we can 
construct the steady solutions by identifying the points at which changes of branch 
occur (the critical points) and we also have a succinct characterization of their 
stability. This allows us to distinguish between steady solutions which are local 
minima and those which are global minima. The local minima are linearly stable, but 
are vulnerable to large spatially localized perturbations. On the other hand, the 
global minimum resists even large perturbations. The difference is illustrated 
schematically in figure 2. 

It is interesting that in the example discussed in $ 5  the multiple branches occur 
only in a midlatitude band (see figure 4). This means that the local minima are most 
vulnerable to perturbations in this midlatitude region. For instance, the saline 
branch, xc(y), in figure 4(a) can be destabilized by a localized salinity perturbation 
only in the region where the alternative steady solutions exist. In  the equatorial and 
polar regions it should be resistant to even large-amplitude perturbations. It would 
be interesting to see if the multiple equilibria in general circulation models, such as 
that of Bryan (1886), are selectively sensitive to midlatitude perturbations. 
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Appendix A. Linear stability near a stationary solution 
The evolution equation can be written in the form 

with the Lyapunov functional, @(x), defined in (4.4). A stationary solution, xo 
satisfies 

and in the vicinity of the stationary solution the functional derivative of @ can be 
approximated by 

The linear stability problem is then 

Multiplying (A 4) by the quantity inside the square brackets and integrating over the 
domain one has 

The right-hand side of (A 5 )  is positive definite, while the sign of the left-hand side 
depends on the curvature of the Lyapunov functional a t  the extremum location, xo.  
If the stationary solution, xo, is a minimum then a perturbation will be linearly 
damped, although a finite-amplitude perturbation might grow. If xo is a maximum 
then (A 5 )  guarantees linear instability of xo. 

Appendix B. The structure of the internal boundary layers 
The steady-state solutions satisfy the differential equation 

v, = p2x(x- - )7)2+x-Tf= pa;x. (B 1) 

Steady boundary layers can only be found at the critical points, whose locations, ys, 
are found by requiring that the areas P and Q in figure 1 are equal. Now the inflexion 
point, xI, of the cubic polynomial on the left-hand side of (B 1) is a t  

XI = $7.  (B 2) 

From symmetry, the location of the critical point is determined by requiring that xr 
coincides with the middle zero of V, (i.e. xe in figure 1). Thus the locations of the 
critical points are given implicitly by 

3Tf(Y,) = 27(1 +iP272(Ys)). (B 3) 
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(For instance, substitutingf(y) and ~ ( y )  from (5.1) into (B 3) we get (5.3).) Sincef(y) 
varies slowly on the scale of the boundary layer we can use (B 3) to eliminate f(y) 
from (B 1)  and then factor the resulting cubic. Thus, in the vicinity of the critical 
points, the boundary-layer approximation of (B 1) is 

P " X - k )  r(x-%))2+P-2-$lzl = y2a;x. (B 4) 

The solution of (B 4) is 

x = i + ~ t a n h [ ~ ] ,  Y - Y s  

where we have made the definitions 

Indeed, the outer limit of the boundary-layer solution is 

These values of x coincide with the (stable) zeros x A  and xB of % at  the critical points 
location, ys. 
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